Intro. to ODEs

Quiz 3 Solutions

1) Consider (but do not try to solve) the following initial value problem.

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{\sqrt[3]{4-y^{2}}}{\ln (x)} \\
y\left(x_{0}\right) & =y_{0}
\end{aligned}
$$

a) What restrictions (if any) need to be placed on x_{0} and y_{0} so that the existence of a solution is guaranteed?

In order for the right-hand side of the ODE to be continuous (and realvalued) near the initial datum, we must have $x_{0}>0$ and $x_{0} \neq 1$.
b) What quantity do we need to compute to examine uniqueness of solutions? Compute that quantity.

$$
\frac{\partial f}{\partial y}=-\frac{2 y}{3 \ln (x)\left(4-y^{2}\right)^{2 / 3}}
$$

c) What restrictions (if any) need to be placed on x_{0} and y_{0} so that the solution is guaranteed to be unique.

In addition to $x_{0}>0$ and $x_{0} \neq 1$, we cannot be sure of uniqueness if $y_{0}= \pm 2$.
2) Find the general solution to the following first order differential equation.

$$
\frac{d y}{d x}=\frac{x y}{x^{2}+y^{2}}
$$

Since this is a first-order homogeneous equation, we make the substitution $y=x v$ which gives $\frac{d y}{d x}=v+x \frac{d v}{d x}$.

$$
\begin{aligned}
v+x \frac{d v}{d x} & =\frac{x^{2} v}{x^{2}+x^{2} v^{2}}=\frac{v}{1+v^{2}} \\
x \frac{d v}{d x} & =-\frac{v^{3}}{1+v^{2}} \\
\int \frac{1+v^{2}}{v^{3}} d v & =-\int \frac{d x}{x} \\
-\frac{1}{2} v^{-2}+\ln |v| & =-\ln |x|+C \\
-\frac{1}{2}\left(\frac{x}{y}\right)^{2}+\ln \left|\frac{y}{x}\right| & =-\ln |x|+C \\
-\frac{1}{2}\left(\frac{x}{y}\right)^{2}+\ln |y| & =C
\end{aligned}
$$

3) Solve the following initial value problem.

$$
\begin{aligned}
\frac{d y}{d x}+x y & =x y^{4} \\
y(0) & =\frac{1}{2}
\end{aligned}
$$

This is a Bernoulli equation, and so we make the substitution $z=y^{1-4}=y^{-3}$. This means $y=z^{-1 / 3}$ and

$$
\begin{aligned}
& \frac{d z}{d x}=-3 y^{-4} \frac{d y}{d x} \\
& \frac{d y}{d x}=-\frac{1}{3} y^{4} \frac{d z}{d x}
\end{aligned}
$$

This transforms the ODE into

$$
\begin{aligned}
-\frac{1}{3} y^{4} \frac{d z}{d x}+x y & =x y^{4} \\
\frac{d z}{d x}-3 x z & =-3 x
\end{aligned}
$$

which is a first-order ODE for z. Since the integrating factor is

$$
\mu(x)=e^{-\int 3 x d x}=e^{-3 x^{2} / 2}
$$

the solution for z is

$$
z(x)=\frac{\int-3 x e^{-3 x^{2} / 2} d x+C}{e^{-3 x^{2} / 2}}=\frac{e^{-3 x^{2} / 2}+C}{e^{-3 x^{2} / 2}}=C e^{3 x^{2} / 2}+1
$$

This means the general solution of the original ODE is

$$
y(x)=\left(C e^{3 x^{2} / 2}+1\right)^{-1 / 3}
$$

Fitting the initial condition gives

$$
\begin{gathered}
y(0)=(C+1)^{-1 / 3}=\frac{1}{2} \\
C+1=2^{3}=8 \\
C=7
\end{gathered}
$$

So, the solution to our initial value problem is

$$
y(x)=\left(7 e^{3 x^{2} / 2}+1\right)^{-1 / 3}
$$

